On Jones knot Invariants and Vassiliev Invariants

نویسنده

  • Jun Zhu
چکیده

We show that the n-th derivative of a quantum group invariant, evaluated at 1, is a Vassiliev invariant while the derivative of the Jones polynomial, evaluated at a real number 6 = 1, is not a Vassiliev in variant. The coeecients of the classical Conway polynomial are known to be Vassiliev invariants. We show that the coeecients of the Jones polynomial are not vassiliev invariants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Vassiliev Knot Invariants

The theory of knot invariants of finite type (Vassiliev invariants) is described. These invariants turn out to be at least as powerful as the Jones polynomial and its numerous generalizations coming from various quantum groups, and it is conjectured that these invariants are precisely as powerful as those polynomials. As invariants of finite type are much easier to define and manipulate than th...

متن کامل

The Polynomial Behaviour of Some Knot Invariants

Using the new approach of braiding sequences we reprove the Lin-Wang conjecture, giving a quadratic upper bound for the crossing number of alternating/positive knots, determining uniquely a Vassiliev invariant, and thus making orientation and mutation sensitivity of Vassiliev invariants decidable on alternating/positive knots/mutants only. We give an exponential upper bound for the number of Va...

متن کامل

New knot and link invariants

We study the new formulas of Th. Fiedler for the degree-3-Vassiliev invariants for knots in the 3-sphere and solid torus and present some results obtained by them. We show that a knot with Jones polynomial consisting of exactly two monomials must have at least 20 crossings.

متن کامل

Heegaard–floer Homology for Singular Knots

Using the combinatorial description for knot Heegaard–Floer homology, we give a generalization to singular knots that does fit in the general program of categorification of Vassiliev finite–type invariants theory. Introduction Since the categorification of the Jones polynomial by Mikhail Khovanov in 1999 [Kh00], the study of knots and links via homological invariants has remained constantly on ...

متن کامل

Gauss Sum Invariants, Vassiliev Invariants and Braiding Sequences

We introduce a new approach to Vassiliev invariants. This approach deals with Vassiliev invariants directly on knots and does not make use of diagrams. We give a series of applications of this approach, (re)proving some new and known facts on Vassiliev invariants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007